Extensions 1→N→G→Q→1 with N=C3 and Q=(C22×C8)⋊C2

Direct product G=N×Q with N=C3 and Q=(C22×C8)⋊C2
dρLabelID
C3×(C22×C8)⋊C296C3x(C2^2xC8):C2192,841

Semidirect products G=N:Q with N=C3 and Q=(C22×C8)⋊C2
extensionφ:Q→Aut NdρLabelID
C31((C22×C8)⋊C2) = D6⋊C8⋊C2φ: (C22×C8)⋊C2/C22⋊C8C2 ⊆ Aut C396C3:1((C2^2xC8):C2)192,286
C32((C22×C8)⋊C2) = (C22×C8)⋊7S3φ: (C22×C8)⋊C2/C22×C8C2 ⊆ Aut C396C3:2((C2^2xC8):C2)192,669
C33((C22×C8)⋊C2) = D6⋊C840C2φ: (C22×C8)⋊C2/C2×M4(2)C2 ⊆ Aut C396C3:3((C2^2xC8):C2)192,688
C34((C22×C8)⋊C2) = (C6×D4).11C4φ: (C22×C8)⋊C2/C2×C4○D4C2 ⊆ Aut C396C3:4((C2^2xC8):C2)192,793


׿
×
𝔽